Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus.
نویسندگان
چکیده
Staphylococcus aureus (S. aureus) is a bacterium frequently found proliferating on metal surfaces such as stainless steels used in healthcare and food processing facilities. Past research has shown that a novel Cu-bearing 304 type stainless steel (304CuSS) exhibits excellent antibacterial ability (i.e. against S. aureus) in a short time period (24h.). This work was dedicated to investigate the 304CuSS's inhibition ability towards the S. aureus biofilm formation for an extended period of 7days after incubation. It was found that the antibacterial rate of the 304CuSS against sessile bacterial cells reached over 99.9% in comparison with the 304SS. The thickness and sizes of the biofilms on the 304SS surfaces increased markedly with period of contact, and thus expected higher risk of bio-contamination, indicated by the changes of surface free energy between biofilm and the steel surfaces. The results demonstrated that the 304CuSS exhibited strong inhibition on the growth and adherence of the biofilms. The surface free energy of the 304CuSS after contact with sessile bacterial cells was much lower than that of the 304SS towards the same culture times. The continuously dissolved Cu(2+) ions well demonstrated the dissolution ability of Cu-rich precipitates after exposure to S. aureus solution, from 3.1ppm (2days) to 4.5ppm (7days). For this to occur, a hypothesis mechanism might be established for 304CuSS in which the Cu(2+) ions were released from Cu-rich phases that bond with extracellular polymeric substances (EPS) of the microorganisms. And these inhibited the activities of cell protein/enzymes and effectively prevented planktonic bacterial cells attaching to the 304CuSS metal surface.
منابع مشابه
Evaluation of bactericidal and anti-biofilm properties of a novel surface-active organosilane biocide against healthcare associated pathogens and Pseudomonas aeruginosa biolfilm
Healthcare acquired infections (HAI) pose a great threat in hospital settings and environmental contamination can be attributed to the spread of these. De-contamination and, significantly, prevention of re-contamination of the environment could help in preventing/reducing this threat. Goldshield (GS5) is a novel organosilane biocide marketed as a single application product with residual biocida...
متن کاملAntibiofilm Effect of Octenidine Hydrochloride on Staphylococcus aureus, MRSA and VRSA
Millions of indwelling devices are implanted in patients every year, and staphylococci (S. aureus, MRSA and vancomycin-resistant S. aureus (VRSA)) are responsible for a majority of infections associated with these devices, thereby leading to treatment failures. Once established, staphylococcal biofilms become resistant to antimicrobial treatment and host response, thereby serving as the etiolog...
متن کاملBiofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers
This study assessed the capacity of adhesion, the detachment kinetic and the biofilm formation by Staphylococcus aureus isolated from food services on stainless steel and polypropylene surfaces (2 × 2 cm) when cultivated in a meat-based broth at 28 and 7 °C. It was also to study the efficacy of the sanitizers sodium hypochlorite (250 mg/L) and peracetic acid (30 mg/L) in inactivating the bacter...
متن کاملFormation of Biofilms by Staphylococcus Aureus on Stainless Steel and Glass Surfaces and Its Resistance to Some Selected Chemical Sanitizers
The objectives of this work were to verify the capability of Staphylococcus aureus of forming bio-film on stainless steel and glass surfaces; to evaluate the efficiency of sodium dichloroisocyanurate, hydrogen peroxide and peracetic acid in inactivating Staphylococcus aureus cells adhered onto these surfaces; and to visualize biofilm development by scanning electron microscopy before and after ...
متن کاملAnti-adhesion and Anti-biofilm Potential of Organosilane Nanoparticles against Foodborne Pathogens
Nowadays, modification of surfaces by nanoparticulate coatings is a simple process that may have applications in reducing the prevalence of bacterial cells both on medical devices and food processing surfaces. To this direction, biofilm biological cycle of Salmonella Typhimurium, Listeria monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus, and Yersinia enterocolitica on stainless st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Materials science & engineering. C, Materials for biological applications
دوره 51 شماره
صفحات -
تاریخ انتشار 2015